

An Architecture for Inline Anomaly Detection

> Tammo Krueger

Overview

System Architecture

Detection State Machine

Redirection

Anomaly Detection

Embedding and Similarity Measures Anomaly Score

Implementation

Experiments Runtime

An Architecture for Inline Anomaly Detection

Tammo Krueger, Christian Gehl, Konrad Rieck and Pavel Laskov Fraunhofer Institute FIRST Intelligent Data Analysis, Berlin, Germany

12.12.2008 @ EC2ND 2008

Outline

An Architecture for Inline Anomaly Detection

> Tammo Krueger

Overview

System Architecture

Detection State Machine

Redirection

Anomaly Detection

Embedding and Similarity Measures Anomaly Score

Implementation

Experiments Runtime Accuracy

Conclusions

- 2 Detection State Machine
- 3 Redirection
- 4 Anomaly Detection
 - Embedding and Similarity Measures
 - Anomaly Score
- 5 Implementation
- 6 Experiments
 - Runtime
 - Accuracy

Overview

An Architecture for Inline Anomaly Detection

> Tammo Krueger

Overview

- System Architecture
- Detection State Machine
- Redirection
- Anomaly Detection
- Embedding and Similarity Measures Anomaly Score
- Implementation
- Experiments
- Runtime
- Conclusions

- **Goal**: exploit anomaly detection in an *inline* intrusion prevention system:
 - ... with an *application-independent* architecture
 - ... where decision-making is performed at the *network layer*
 - ... where anomaly detection runs at the *application layer*
- Inline defense policies
 - 1 forwarding to a production system
 - 2 redirection to a hardened system (shadow system)
 - 3 redirection to a monitored network sink (forensic sink)

Detection State Machine

- Detection Embedding
- Similarity Measures Anomaly Score
- Implementation
- Experiments Runtime Accuracy
- Conclusions

- Each connection has a detection state
- Each detection state triggers specific action for each packet of the connection

Adjust corresponding sequence / ACK numbers of packets

- Memorize difference in the sequence numbers (here d = z - y)
 - Adjust corresponding sequence / ACK numbers of packets

Anomaly Detection – Overview

Anomaly Detection

Embedding and Similarity Measures Anomaly Score

Implementation

Experiments

Accuracy

- Idea: An anomaly is a *deviation* from a model of *normality*
- Implementation:
 - 1 Embed data in *vector space* via embedding function
 - 2 Learn the center μ of the data as a model of normality
 - 3 Anomaly score for new data point is distance to μ

Embedding and Similarity Measures

An Architecture for Inline Anomaly Detection

> Tammo Krueger

Overview

System Architecture

Detection State Machine

Redirection

Anomaly Detection

Embedding and Similarity Measures Anomaly Score

mplementation

Experiments Runtime Accuracy

Conclusions

Given the set of all possible n-grams over byte sequences $S = \{0, \dots, 255\}^n$, we define the embedding function ϕ as

$$\phi(x) = (\phi_s(x))_{s \in S} \in \mathbb{R}^{|S|}$$
 with $\phi_s(x) = \#_s(x)$

• Example
$$(n = 3)$$
:

$$\phi('\text{Hello}') = (0, \dots, \frac{\overset{Hel}{1}}{3}, \frac{\overset{ell}{1}}{3}, \frac{1}{3}, \dots, 0)^T \in \mathbb{R}^{16777216}$$

With embedding function we can define distances between byte sequences, for instance Euclidean distance:

$$d(x,z) = \|\phi(x) - \phi(z)\|_2 = \sqrt{\sum_{s \in S} |\phi_s(x) - \phi_s(z)|^2}$$

Anomaly Score

An Architecture for Inline Anomaly Detection

> Tammo Krueger

Overview

System Architecture

Detection State Machine

Redirection

Anomaly Detection

Embedding and Similarity Measures Anomaly Score

molementation

Experiments

Runtime

1 Training: collect normal data packets $X = \{x_1, ..., x_n\}$ and compute their mean $\mu = \frac{1}{n} \sum_{i=1}^{n} \phi(x_i)$.

2 Validation:

- 1 collect an independent set of normal packets $\tilde{X} = \{\tilde{x}_1, \dots, \tilde{x}_m\}$
- 2 pre-define a false-positive rate ν
- 3 determine anomaly threshold t_a so that the ratio of packets \tilde{x}_i for which $d(\mu, \tilde{x}_i) > t_a$ is smaller than ν

3 *Deployment*: for each incoming packet *y*, compute the anomaly score:

$$\operatorname{score}(y) = egin{cases} \operatorname{normal}, & \operatorname{if} d(\mu, y) \leq t_a \ \operatorname{anomaly}, & \operatorname{otherwise} \end{cases}$$

Implementation Details

An Architecture for Inline Anomaly Detection

> Tammo Krueger

Overview

System Architecture

Detection State Machine

Redirection

Anomaly Detection

Embedding and Similarity Measures Anomaly Score

Implementation

Experiments Runtime Accuracy

- Mechanism for performing *inline* anomaly detection:
 - netfilter linux firewall
 - libnetfilter_queue for queueing packets to user space
- libnet for packet creation and delivery in the redirection mechanism
- Prototype deployed on recent Debian system acting as a central router between client system and the production / shadow system
- Client system: Apache Flood
- Production system: OpenBSD Apache server
- Shadow system: OpenBSD Apache server with Systrace
- Everything hosted on VMware ESX Server 3

Experiments – Impact of Instrumentation

- Similarity Measures Anomaly Score
- Implementation
- Experiments
- Runtime Accuracy
- Conclusions

HTML returns just a static HTML page
PHP returns a dynamic, PHP generated page
MYSQL returns a dynamic, PHP generated page with values read from a MYSQL database.

Experiments – Packet Filter Actions

An Architecture for Inline Anomaly Detection

> Tammo Krueger

Overview

System Architectur

Detection State Machine

Redirection

Anomaly Detection

Embedding and Similarity Measures Anomaly Score

Implementation

Experiments

Runtime Accuracy

Conclusions

Туре	normal	anomaly	sink	red-1st	red-next
HTML	1.47	2.05	1.64	235.63	1.62
PHP	3.08	3.59	3.36	238.25	3.13
MYSQL	30.71	31.09	30.72	242.32	30.75

Packet filter action scenarios:

anomaly the distance of each packet to a centroid is calculated and compared to t_a

sink each packet is logged to the forensic sink

red-1st each connection is redirected

red-next translation of sequence numbers, addresses and ports for redirection of subsequent packets

Experiments - Evaluation Dataset

An Architecture for Inline Anomaly Detection

> Tammo Krueger

Overview

- System Architecture
- Detection State Machine

Redirection

Anomaly Detection

Embedding and Similarity Measures Anomaly Score

Implementation

Experiments Runtime Accuracy

- Normal data from incoming HTTP traffic of our institute:
 - 150k unsanitized connections (totaling to roughly 240k packets) of 10 consecutive days
 - Split into three equal parts of 50k connections each for training, validation and testing
- Attack Data:
 - 100 instances (470 connections totaling to 2960 packets) of recent exploits in the Metasploit framework
 - Nessus HTTP scans
- Evaluation criterion: AUC_{0.01}(area under ROC-curve with false positive rate ≤ 0.01)

Experiments – Accuracy I

An Architecture for Inline Anomaly Detection

> Tammo Krueger

Overview

System Architectur

Detection State Machine

Redirection

Anomaly Detection

Embedding and Similarity Measures Anomaly Score

Implementation

Experiments

Accuracy

Conclusions

Results on test dataset:

- **a** 3102 (\sim 0.05%) packets with payload are redirected
- 111 (\sim 0.001%) packets with payload are logged to the forensic sink
- 58,369 packets with payload are processed as normal
- Ratios for the evaluation of the system:

broken =
$$\frac{\# \text{ normal conn. in SINK}}{\# \text{ all normal conn.}} = 0.0008$$

jailed = $\frac{\# \text{ attack conn. in REDIRECT}}{\# \text{ all attack conn.}} = 0.9760$

Experiments – Accuracy II

An					
Architecture					
for Inline					
Anomaly					
Detection					

Tammo Krueger

Overview

System Architecture

Detection State Machine

Redirection

Anomaly Detection

Embedding and Similarity Measures Anomaly Score

Implementation

Experiments Runtime

Accuracy

Туре	True positive rate	False positive rate
plain AD	0.9939 ± 0.0030	0.0092 ± 0.0105
AD with redirect	0.9952 ± 0.0022	0.0017 ± 0.0009

- Comparison against "plain anomaly detector", i.e. system without the REDIRECT/SINK extension
- Improves both true positive and false positive rate

Conclusions

- An Architecture for Inline Anomaly Detection
 - Tammo Krueger
- Overview
- System Architecture
- Detection State Machine
- Redirection
- Anomaly Detection
- Embedding and Similarity Measures Anomaly Score
- Implementation
- Experiments Runtime Accuracy

- Inline intrusion prevention system which
 - ... is application-independent
 - ... decides at the *network layer*
 - ... performs anomaly detection at the *application layer*
- Minor performance impact (≤ 0.5 ms per packet)
- System significantly improves both true positive and false positive rate
- Limitation: requires synchronization

An					
Architecture					
for Inline					
Anomaly					
Detection					

Tammo Krueger

Overview

System Architecture

Detection State Machine

Redirection

Anomaly Detection

Embedding and Similarity Measures Anomaly Score

Implementation

Experiments

Runtime

Conclusions

Questions? Remarks? Thanks for your attention!

Evaluation guideline

An Architecture for Inline Anomaly Detection			
Tammo Krueger			
Overview	Target	Normal Traffic	Attack Traffic
System Architecture	REDIRECT	True neg.	True pos.
Detection State Machine	SINK	False pos.	True pos.
Redirection			
Anomaly Detection			
Embedding and Similarity Measures Anomaly Score			
Implementation			
Experiments Runtime Accuracy			
Conclusions			