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Overview

Goal: exploit anomaly detection in an inline intrusion
prevention system:

. . . with an application-independent architecture

. . . where decision-making is performed at the network layer

. . . where anomaly detection runs at the application layer

Inline defense policies

1 forwarding to a production system
2 redirection to a hardened system (shadow system)
3 redirection to a monitored network sink (forensic sink)
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Detection State Machine

INIT

SEEN FORENSIC_SINK

REDIRECT_AWAIT_ACK REDIRECT

[1st payload
anomalous] 

[1st payload OK] 

[ACK from
shadow system] 

[Payload anomalous] 

[More data] 

[Connection closed]

[More data] 

[Payload OK]

Each connection has a detection state

Each detection state triggers specific action for each
packet of the connection
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Redirection

Client PacketFilter ProductionSystem ShadowSystem

Memorize difference in the sequence numbers (here
d = z − y)

Adjust corresponding sequence / ACK numbers of packets
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Redirection

Client PacketFilter ProductionSystem ShadowSystem

SYN (SEQ = x)

SYN (SEQ = y, ACK = x + 1)
(SEQ = x+ 1, ACK = y + 1)

Memorize difference in the sequence numbers (here
d = z − y)

Adjust corresponding sequence / ACK numbers of packets
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Client PacketFilter ProductionSystem ShadowSystem
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RST

Memorize difference in the sequence numbers (here
d = z − y)

Adjust corresponding sequence / ACK numbers of packets
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Client PacketFilter ProductionSystem ShadowSystem

SYN (SEQ = x)

SYN (SEQ = y, ACK = x + 1)
(SEQ = x+ 1, ACK = y + 1)

An. Payl. (SEQ = x + 1, ACK = y + 1)

RST

SYN (SEQ = x)

SYN (SEQ = z, ACK = x + 1)
(SEQ = x + 1, ACK = z + 1)

Memorize difference in the sequence numbers (here
d = z − y)

Adjust corresponding sequence / ACK numbers of packets
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Redirection

Client PacketFilter ProductionSystem ShadowSystem

SYN (SEQ = x)

SYN (SEQ = y, ACK = x + 1)
(SEQ = x+ 1, ACK = y + 1)

An. Payl. (SEQ = x + 1, ACK = y + 1)

RST

SYN (SEQ = x)

SYN (SEQ = z, ACK = x + 1)
(SEQ = x + 1, ACK = z + 1)

An. Payl. (SEQ = x + 1, ACK = y + 1)

An. Payl. (SEQ = x + 1, ACK = y + 1 + d)

Resp. (SEQ = z + 1, ACK = x + 1 + len)

Memorize difference in the sequence numbers (here
d = z − y)

Adjust corresponding sequence / ACK numbers of packets
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Redirection

Client PacketFilter ProductionSystem ShadowSystem

SYN (SEQ = x)

SYN (SEQ = y, ACK = x + 1)
(SEQ = x+ 1, ACK = y + 1)

An. Payl. (SEQ = x + 1, ACK = y + 1)

RST

SYN (SEQ = x)

SYN (SEQ = z, ACK = x + 1)
(SEQ = x + 1, ACK = z + 1)

An. Payl. (SEQ = x + 1, ACK = y + 1)

An. Payl. (SEQ = x + 1, ACK = y + 1 + d)

Resp. (SEQ = z + 1, ACK = x + 1 + len)

Resp. (SEQ = z + 1 - d, ACK = x + 1 + len)

Memorize difference in the sequence numbers (here
d = z − y)

Adjust corresponding sequence / ACK numbers of packets
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Anomaly Detection – Overview

Sequence embedding

X

d(x,
 )

Idea: An anomaly is a deviation from a model of normality

Implementation:

1 Embed data in vector space via embedding function
2 Learn the center µ of the data as a model of normality
3 Anomaly score for new data point is distance to µ
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Embedding and Similarity Measures

Given the set of all possible n-grams over byte sequences
S = {0, . . . , 255}n, we define the embedding function φ as

φ(x) = (φs(x))s∈S ∈ R|S| with φs(x) = #s(x)

Example (n = 3):

φ(′Hello ′) = (0, . . . ,

Hel
1

3
,

ell
1

3
,

llo
1

3
, . . . , 0)T ∈ R16777216

With embedding function we can define distances between
byte sequences, for instance Euclidean distance:

d(x , z) = ‖φ(x)− φ(z)‖2 =

√∑
s∈S

|φs(x)− φs(z)|2
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Anomaly Score

1 Training: collect normal data packets X = {x1, . . . , xn}
and compute their mean µ = 1

n

∑n
i=1 φ(xi ).

2 Validation:

1 collect an independent set of normal packets
X̃ = {x̃1, . . . , x̃m}

2 pre-define a false-positive rate ν
3 determine anomaly threshold ta so that the ratio of

packets x̃i for which d(µ, x̃i ) > ta is smaller than ν

3 Deployment: for each incoming packet y , compute the
anomaly score:

score(y) =

{
normal, if d(µ, y) ≤ ta

anomaly, otherwise
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Implementation Details

Mechanism for performing inline anomaly detection:

netfilter linux firewall
libnetfilter queue for queueing packets to user space

libnet for packet creation and delivery in the redirection
mechanism

Prototype deployed on recent Debian system acting as a
central router between client system and the production /
shadow system

Client system: Apache Flood

Production system: OpenBSD Apache server

Shadow system: OpenBSD Apache server with Systrace

Everything hosted on VMware ESX Server 3
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Experiments – Impact of Instrumentation

HTML HTML−systr PHP PHP−systr MYSQL MYSQL−systr
0
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Different scenarios:

HTML returns just a static HTML page

PHP returns a dynamic, PHP generated page

MYSQL returns a dynamic, PHP generated page with
values read from a MYSQL database.
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Experiments – Packet Filter Actions

Type normal anomaly sink red-1st red-next

HTML 1.47 2.05 1.64 235.63 1.62
PHP 3.08 3.59 3.36 238.25 3.13
MYSQL 30.71 31.09 30.72 242.32 30.75

Packet filter action scenarios:

anomaly the distance of each packet to a centroid is
calculated and compared to ta

sink each packet is logged to the forensic sink

red-1st each connection is redirected

red-next translation of sequence numbers, addresses and
ports for redirection of subsequent packets
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Experiments – Evaluation Dataset

Normal data from incoming HTTP traffic of our institute:

150k unsanitized connections (totaling to roughly 240k
packets) of 10 consecutive days
Split into three equal parts of 50k connections each for
training, validation and testing

Attack Data:

100 instances (470 connections totaling to 2960 packets)
of recent exploits in the Metasploit framework
Nessus HTTP scans

Evaluation criterion: AUC0.01(area under ROC-curve with
false positive rate ≤ 0.01)



An
Architecture

for Inline
Anomaly
Detection

Tammo
Krueger

Overview

System
Architecture

Detection
State Machine

Redirection

Anomaly
Detection

Embedding and
Similarity
Measures

Anomaly Score

Implementation

Experiments

Runtime

Accuracy

Conclusions

Experiments – Accuracy I

Results on test dataset:

3102 (∼ 0.05%) packets with payload are redirected
111 (∼ 0.001%) packets with payload are logged to the
forensic sink
58,369 packets with payload are processed as normal

Ratios for the evaluation of the system:

broken =
# normal conn. in SINK

# all normal conn.
= 0.0008

jailed =
# attack conn. in REDIRECT

# all attack conn.
= 0.9760
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Experiments – Accuracy II

Type True positive rate False positive rate

plain AD 0.9939 ± 0.0030 0.0092 ± 0.0105
AD with redirect 0.9952 ± 0.0022 0.0017 ± 0.0009

Comparison against “plain anomaly detector”, i.e. system
without the REDIRECT/SINK extension

Improves both true positive and false positive rate
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Conclusions

Inline intrusion prevention system which

. . . is application-independent

. . . decides at the network layer

. . . performs anomaly detection at the application layer

Minor performance impact (≤ 0.5 ms per packet)

System significantly improves both true positive and false
positive rate

Limitation: requires synchronization
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Questions? Remarks?
Thanks for your attention!
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Evaluation guideline

Target Normal Traffic Attack Traffic

REDIRECT True neg. True pos.
SINK False pos. True pos.
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